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Evaluation of nonlinearity and validity of nonlinear modeling for complex time series
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Even if an original time series exhibits nonlinearity, it is not always effective to approximate the time series
by a nonlinear model because such nonlinear models have high complexity from the viewpoint of information
criteria. Therefore, we propose two measures to evaluate both the nonlinearity of a time series and validity of
nonlinear modeling applied to it by nonlinear predictability and information criteria. Through numerical simu-
lations, we confirm that the proposed measures effectively detect the nonlinearity of an observed time series
and evaluate the validity of the nonlinear model. The measures are also robust against observational noises. We
also analyze some real time series: the difference of the number of chickenpox and measles patients, the
number of sunspots, five Japanese vowels, and the chaotic laser. We can confirm that the nonlinear model is
effective for the Japanese vowel /a/, the difference of the number of measles patients, and the chaotic laser.
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I. INTRODUCTION

Analysis methods based on the linear theory, such as fre-
quency spectrum analysis, are used for the prediction and
control of complex phenomena [1]. However, discoveries of
deterministic chaos indicate that linear modeling is not nec-
essarily suitable for the analysis of such complex behavior.
When we consider a complex phenomenon, we are often
required to determine whether the phenomenon is linear or
nonlinear, or possibly chaotic, only on the basis of a time
series. Evaluation of nonlinear predictability is one of the
popular methods used to identify deterministic chaos from
the viewpoint of a sensitive dependence on initial conditions
[2]; if the time series is chaotic, the prediction accuracy de-
creases exponentially as a prediction step increases. Al-
though nonlinear prediction methods are indispensable for
nonlinear time series analysis, the nonlinearity of the time
series does not always imply the validity of the application
of a nonlinear model to the time series. This is because the
nonlinear models are more complex and require a greater
number of parameters than the linear model. This indicates
that it is very important to consider both the evaluation of the
nonlinearity of the time series and the validity of the appli-
cation of nonlinear modeling to the time series. However,
conventional studies (e.g., Ref. [3]) have discussed either the
nonlinearity or the validity; therefore, these methods could
not recognize the case in which the nonlinear modeling is
excessive even if the data exhibit nonlinearity.

In this paper, we propose two measures. The first measure
quantifies the nonlinearity of the time series by comparing
nonlinear-prediction errors with an optimum linear-
prediction error using the statistical inference of the cross-
validation (CV) method [4]. Thus, we estimate how the non-
linearity of the time series contributes to the improvement in
the prediction accuracy [5].

However, nonlinear modeling generally increases the
modeling complexity. Thus, nonlinearity does not always im-
ply that the model is efficient. In other words, the modeling
efficiency depends on a trade-off between the complexity of
the model and the accuracy of data fitting. In order to discuss
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the efficiency, we introduce an information -criterion—
namely, the minimum description length (MDL) [6-9]—to
propose the second measure. By using the MDL, the second
measure evaluates the advantage of a nonlinear model over
an optimal linear model. In the contrast to conventional stud-
ies [3], our study evaluates the nonlinearity of the data and
the validity of nonlinear modeling by comparing nonlinear
modeling and linear modeling in terms of the measures.

To confirm the validity of the two proposed measures, we
apply them to the Rossler system [10] with several observa-
tional noises. Hence, we confirm that the proposed measures
are valid not only for testing the nonlinearity of the original
data but also for quantifying the efficiency of nonlinear mod-
eling in comparison with that of optimal linear modeling,
even if the observed time series is contaminated with heavy
observational noise. In addition, in terms of the application
of the proposed measures to real data analysis, we analyze
the NH,-far infrared (FIR) laser [11], annual number of sun-
spots, the difference of the numbers of measles and chicken-
pox patients [2], and five Japanese vowels [12,13].

II. EVALUATION OF NONLINEARITY AND VALIDITY
OF NONLINEAR MODELING

First, we provide an outline of the linear and nonlinear
modeling employed in this study. To examine whether the
original data exhibit nonlinearity, it is natural to compare the
fitting accuracy of a linear model with that of a nonlinear
model. By the Takens embedding theorem [14] and its ex-
tension [15], we denote a point in a reconstructed state space
as X(1)={x(t),x(t=7),...,x(t—=(d-1)D}. Here, d is an em-
bedding dimension and 7 is the delay time. The construction
of a model corresponds to the estimation of the function F in
x(t)=F(X(t— 7). If we consider X(z—7) as an input set and
x(t) as an output, then the linear modeling implies an ap-
proximation of F with a hyperplane—that is, an autoregres-
sive (AR) model [1]—while the nonlinear modeling implies
an approximation of F' with a hypersurface.
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In this study, we use the radial basis function (RBF) net-
work [7-9,16] as the nonlinear component of the nonlinear
model. The RBF(d,m) network is represented as follows:

d
x(t+7)= E ax(t—(i-1)7) +aq
i=1

+ 2 N(X@) - C)f) + (), (1)
j=1

O(|X(r) - Cj|) =exp[- aj|X(f) - Cj|2]’ (1) ~ N(0,6%),

2)

where ® is an RBF that forms a hypersurface and C; is the
center point of ®@. These terms bend the hyperplane locally to
form a hypersurface similar to pushing a soft film at C;, and
aj=ﬁ2f:ll | C;—C;|, where C; is the ith nearest point of C;;
\; corresponds to the pressure required to bend the hyper-
plane locally. Thus, intuitively, the RBF model is a simple
extension of the AR model. The modeling implies estimation
of the sets {a,»}?zo, {NYL e}y, and {C )L, The parameters
of the model are estimated by least-mean-squares error fit-
ting. The fitting error corresponds to ° in Eq. (2). If m=0,
Eq. (1) is reduced to the AR(d) model. Generally, a linear
model is considerably simpler than a nonlinear model.

Here, let us consider again what is an optimal model.
Although we use the RBF terms as the nonlinear component
in Eq. (1), the chosen RBF model is merely an approxima-
tion. Then, this approximation can never be justified because
accurate information regarding the nonlinearity class of the
data is unavailable. In addition, even if the information is
provided explicitly, estimation of an optimal model in the
class requires a large amount of computation, and it possibly
becomes an NP-complete problem. However, we can exam-
ine the advantage of the nonlinear model if we give priority
to the optimization of AR(d) linear terms in Eq. (1) for fit-
ting linear noise over the optimization of the RBF terms for
fitting nonlinear noise that could not be fitted using linear
terms.

The centers of the RBF network C; (j=1,...,m) are de-
termined to be the worst-fitted points by the optimal AR(d)
model. If the model fitting at X(7) is the worst, a new center
point is located at X(7) and a new RBF is set at X(7). Then,
the above process is repeated and the errors are calculated.
The advantages of nonlinear modeling can be examined by
estimating the reduction in the information criteria. Then, if
we do not consider the modeling complexity—that is, the
number of modeling parameters—we can use as many RBFs
as required to build a complex hypersurface for fitting the
data to the model. If the fitting accuracy improves due to an
increase in the number of RBFs, it can be concluded that the
original data are nonlinear.

To estimate the fitting errors obtained by each model, we
used the CV method [4], which is one of the resampling
schemes [17]. The original data x(r) were divided into
k (k=1,2,...,K) parts, where one of the parts was consid-
ered as testing data in order to estimate the modeling accu-
racy and the remaining parts were considered as learning
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data to be modeled by Eq. (1). To perform a test, we pre-
dicted the testing data by the AR(d) model or by the
RBF(d,m) network estimated from the learning data of the
other K—1 parts. Then, we estimated the prediction accura-
cies 67 (k=1,...,K) by considering each part of the original
data as the testing data and the remaining part as the learning
data. Further, we considered their mean value as the final
modeling error 6°= %Ekﬂléﬁ. By this method, we estimated a
general fitting error without overfitting the original data. For
simplicity, we set K=2 in our study. Using this method, we
selected d” for the optimum AR model and m"(d) for the
RBF network.

To quantify the nonlinearity of the original data, we pro-
posed the first measure as follows:

A2
O-RBF(d,m*(d))
) ; 3)

T AR

E(d) =

where &ZRBF( dm*(a) 18 the fitting error obtained by the RBF

network for the case m=m"(d) and &ZAR & is the fitting error

(
obtained by the optimum AR model for the case d=d". In Eq.
(3), we could use the same embedding dimension d for both
the AR model and the RBF network in order to perform a
simple comparison of the linear and nonlinear models. How-
ever, we compared each optimum model based on its com-
plexity. When d is unsuitable to reconstruct an attractor from
the observed time series, it is possible that the linear and
nonlinear terms in Eq. (1) interfere with each other; for ex-
ample, the nonlinear terms model the linearity of the time
series. In such a case, nonuniform embedding [7-9] reduces
the problem of interference between the linear and nonlinear
models, because the nonuniform embedding accurately re-
constructs an attractor in a state space. We intend to discuss
this possibility in a future study.

However, if the time series does not have any nonlinear-
ity, the optimum linear model must be more accurate than
any nonlinear model. That is, the condition 6'122131:( d"(d)

A2 . . .
=0 AR(d) 15 satisfied. On the other hand, even if the observed
time series has nonlinearity and the linear terms model non-
linearity, the linear model cannot be more accurate than the

)

. " A2 .
= "
nonlinear model. Then, the condition URBF(d, *d) = o R(d) 18

satisfied. Thus, by examining whether the measure E(d) is
less than 1, we can evaluate whether the original time series
exhibits nonlinearity. In addition, even if we cannot com-
pletely eliminate the interference between the linear and non-
linear models, we can minimize it by changing d and deter-
mine the largest nonlinearity as E(d).

Even if an original time series exhibits nonlinearity, it is
not always feasible to employ a nonlinear model because it
increases the modeling complexity [18]. Thus, nonlinearity
does not always imply the validity of nonlinear modeling. To
measure the balance between the complexity and the fitting
error of a model, we adopted a major criterion—namely, the
MDL [6-9]:
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M(n)=NIné*+nlnN, (4)

where N is the data length and n is the number of modeling
parameters. In this study, to estimate n, we removed ineffec-
tive terms whose contribution rates are less than 1[%]. Here,
a modeling residual is denoted as ¢; when we remove the ith
linear term of Eq. (1). A modeling residual is denoted as &
when we remove the jth nonlinear term of Eq. (1). Then, the
contribution rate of the ith term is defined as the ratio of
AG(=6,—6=0) to =¢Aé;. The contribution rate of the jth
nonlinear term is defined as the ratio of Ag; to X7'Ag;. If we
do not introduce the contribution rate, it may be possible that
all the terms of the higher-order AR model will be nonzero
because the MDL counts each term equally regardless of its
contribution. Then, the number of parameters of an optimum
model is determined by minimizing the criteria. For the
AR(d) model, M(n,(d)) with n,(d)=d+1-¢,(d), where
¢,(d) is the number of linear terms removed from the model,
is minimized in order to obtain the optimum embedding di-
mension d". For the RBF(d,m) network, M(n,(d,m)) with
n,y(d,m)=(d+2)[m—¢,(d)]+d+1—¢,(d), where ¢,(d) is the
number of nonlinear terms removed from the model, is mini-
mized in order to obtain the optimum number of RBFs
m’"(d). To quantify the efficiency of nonlinear modeling and
estimate d*, we used a strategy that is different from that in
Refs. [7-9]:

M(1) — M(ny(d,m"(d)))

P == D~ M@

; (5)

where M(1) is the value of MDL for the simplest model—
that is, d=0 and m=0. Equation (5) represents the improve-
ment ratio of each optimum model. If the measure P(d) is
greater than 1, the nonlinear modeling will be more suitable
for the original time series from the viewpoint of the model-
ing efficiency.

The MDL considers that all the terms of an estimated
model have the same weight. Then, even if the contribution
rate of a term is small, it is counted equally. On the other
hand, the CV method does not consider the number of terms
for modeling and it positively adopts the terms that can im-
prove the fitting accuracy of modeling, even if the size of the
model increases. That is, the CV method directly confirms
whether a hypersurface (nonlinear model) or a hyperplane
(linear model) fits data more accurately without overfitting.
In other words, the MDL estimates the efficiency of the
model from the viewpoint of Occam’s razor and the CV
method reveals the hidden nonlinearity in the original data.

To summarize the proposed method, the nonlinearity is
detected if E(d) <1 and the efficiency of nonlinear modeling
is detected if P(d)>1. However, our method does not al-
ways work well to any original data. Even if the data have
nonlinearity, it is possible that our method does not detect the
nonlinearity—that is, a false-negative response. The false-
negative response is caused by the NP-completeness of the
problem of finding the true model even if we know a model
class perfectly. Therefore, we do not aggressively insist on
the linearity and the efficiency of linear modeling of the
original data even if any nonlinearity is not detected. On the
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FIG. 1. (Color online) Estimation of (a) nonlinearity with Eq.
(3) and (b) efficiency of nonlinear modeling with Eq. (5) for the
Rossler model with and without observational noise and its FT
surrogate.

other hand, our method is robust to the false-positive re-
sponse which misjudges that linear original data exhibit non-
linearity. If the time series does not have any nonlinearity,
the nonlinear model must not be more accurate than the op-
. . . ops A2

timum linear model. That is, the condition ORBF(dm(d)

A2
= 5
= O\R("
positive response.

is satisfied. This means a robustness to the false-

III. APPLICATION OF THE PROPOSED MEASURES TO
NONLINEAR SYSTEMS

To confirm the validity of the proposed measures, we ap-
plied them to the first variable of the Rdssler equations
[10]—namely, x=-y-z, y=x+ay and z=b+z(x—c)
(@a=0.36 b=0.4 and c=4.5)—as a nonlinear time series,
where we set the data length as N=8000. Then, we normal-
ized the time series x and set 7=15, which was decided by
the autocorrelation function of the observed time series. We
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also used the Fourier-transformed (FT) surrogates [19] of the
Rossler equations for producing a linear time series.

The results are shown in Fig. 1. For the linear data (FT
surrogates: dash-dotted lines in Fig. 1), because E(d) is al-
ways greater than 1 and P(d) is always less than 1, the non-
linearity and validity of the nonlinear model are not con-
firmed. The solid lines with stars, crosses, pluses, and solid
circles denote the results of the examination of the
robustness of the proposed measures against observational
noise. We added the Gaussian noise € of the signal-to-noise
ratio R [dB] to the Rossler equations. Here, we defined R
[dB]=101n 0%/ 02, where o7 and o are the variances of x
and e.

In the case of nonlinear data, we observed regions where
E(d)<1 and P(d) > 1; the data exhibit nonlinearity, and non-
linear modeling is more effective than linear modeling.
Moreover, we evaluated the optimum embedding dimension
for modeling at which P(d) is maximized. More importantly,
when the Rossler data contain a large amount of observa-
tional noise, the proposed measures can estimate a degree of
nonlinearity and the validity of the nonlinear model of the
original data embedded in a d-dimensional state space ac-
cording to the degree of the deviation of E(d) and P(d) from
1. It is natural that these measures come close to 1 as the
amount of noise increases because the nonlinearity is re-
duced by linear noise.

It has been reported that when the least-squares parameter
estimation method is used to model data that are contami-
nated with observational noise, the nonlinear model cannot
be estimated accurately; the estimated nonlinear model tends
to have some extra terms with considerably smaller coeffi-
cients [22,23]. One of the reasons for obtaining reasonable
results as shown in Fig. 1 is that the contribution rates intro-
duced above might function effectively. In a future study, we
will examine the influence of model degeneracy on the pro-
posed methods in detail and discuss methods to solve this
problem from different viewpoints.

IV. APPLICATION TO REAL DATA ANALYSIS

To demonstrate the application of the proposed measures
to real data, we analyzed the NH;-FIR laser (N=1000) [11],
the first difference of the number of chickenpox patients
(N=533) [2], the first difference of the number of measles
patients (N=432) [2], and the annual number of sunspots
(N=294) by using 7=1, which was decided by the autocor-
relation of the data.

The results are shown in Fig. 2. We confirm that the data
of the NH;-FIR laser and measles patients exhibit nonlinear-
ity because E(d) <1 and nonlinear modeling is more effec-
tive because P(d) > 1. Moreover, the appropriate embedding
dimensions are small with a maximum value of P(d), as
shown in Fig. 2(b). As d becomes large, E(d) and P(d) come
close to 1. That is, the nonlinearity and validity of the non-
linear model are weakened. On the other hand, we could not
confirm the nonlinearity of the data of the chickenpox pa-
tients because E(d)=1 for all d. Moreover, the validity of
nonlinear modeling is not confirmed because P(d) =1 for all
d, particularly at small values of d.
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FIG. 2. (Color online) The same as Fig. 1, but for the real data
described in the text.

Although the above results are consistent with conven-
tional results, the application of the proposed measures to the
sunspot numbers reveals an interesting result: that the time
series exhibits nonlinearity because E(d)<1 (2=d=3).
However, the validity of its nonlinear model is not confirmed
because P(d) is always less than 1.

Finally, we analyzed five Japanese vowels [13]—/a/, /i/,
/u/, /e/, and /o/—as shown in Fig. 3. The data length was
N=8000. The results are shown in Fig. 4. Conventional stud-
ies [12,13,20,21] reported that the Japanese vowels have a
nonlinear fluctuation, which is an essential property of their
naturalness. These studies indicate that the fluctuation is
caused by nonlinear and possibly chaotic dynamics. In Fig.
4(a), we obtain the same results as those in Fig. 1 because
E(d)<1, particularly at large values of d. However, we
could not confirm the validity of the nonlinear model for the
vowels /i/, /u/, /e/, and /o/ because P(d) is always less than 1
for the data of these vowels, as shown in Fig. 4(b). Only in
the case of the vowel /a/ is P(d) greater than 1 at large values
of d.

V. CONCLUSIONS

In this paper, we proposed two measures. The first mea-
sure [Eq. (3)] only considers the nonlinearity of data, but
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-1 0 1
x(7)

FIG. 3. (Color online) Reconstructions of the five Japanese
vowels (N=8000): (a) /a/ (7=4), (b) /i/ (=15), (c) v/ (7=13), (d)
e/ (=10), and (e) /g/ (7=8) [13].

does not consider the complexity of data, which allows us to
use as many modeling parameters as required to fit a model
to the data. If the fitting accuracy is improved, the original
data exhibit nonlinearity. On the other hand, the second mea-
sure [Eq. (5)] considers both the complexity and efficiency
of a model from the viewpoint of the information criteria. We
note that these two measures have the possibility of a false-
negative response because the problem to be solved or to
find the true model belongs to NP-completeness; therefore,
we do not aggressively insist on the linearity and the effi-
ciency of linear modeling of the original data. However, as
we showed in Sec. II, the measures are very robust to the
false-positive response.

By numerical simulations, we confirmed the efficiency of
the proposed measures. In addition, the measures can support
the existence of observational noise and they are useful in
determining the optimum embedding dimension for compact
modeling. In fact, we discussed several examples of real data
for which nonlinear modeling is not always suitable, even if
the data exhibit nonlinearity.

Finally, we would like to raise an important future issue to
discuss the availability of nonuniform embedding [7-9] for
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FIG. 4. (Color online) The same as Fig. 1, but for the five
Japanese vowels.

the proposed methods. Moreover, Ref. [22] reports that the
so-called “error in variables” problem in which the least-
squares parameter estimation for nonlinear modeling has a
significant bias. The residual 6° in Eq. (2) may not be esti-
mated accurately. Therefore, the optimal model selected on
the basis of the information criteria often tends to be over-
parametrized [23]. In the future, it is also important to inves-
tigate the influence of such problems on the proposed
method in order to develop a highly effective algorithm.
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